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Abstract—(MC)2 is a lazy memory copy mechanism which can
be used within memcpy-like functions to significantly reduce the
CPU overhead for copies that are sparsely accessed. It can also
hide copy latencies by enhancing the CPU’s ability to execute
them asynchronously. (MC)2’s lazy memcpy avoids copying data
at the time of invocation. Instead, (MC)2 tracks prospective
copies. If copied data is later accessed by a CPU or the cache,
(MC)2 uses the tracking information to lazily execute a copy,
when necessary. Placing (MC)2 at the memory controller puts
it at the perfect vantage point to eliminate the largest source of
memcpy overhead—CPU stalls due to cache misses in the critical
path—while imposing minimal overhead itself.

(MC)2 consists of three main components: memory controller
extensions that implement a lazy memcpy operation, a new
instruction exposing the lazy memcpy, and a flexible software
wrapper with semantics identical to memcpy. We implement
and evaluate (MC)2 in the gem5 simulator using a variety of
microbenchmarks and workloads, including Google’s Protobuf,
where (MC)2 provides a 43% speedup and Linux huge page
copy-on-write faults, where (MC)2 provides 250× lower latency.

Index Terms—lazy copy, memcpy, data transfer, memory
controller, memory, DRAM

I. INTRODUCTION

Memory copies significantly impact the execution latency

and computational overhead of modern applications. Profiling

of Google’s datacenters shows that more than 5% of CPU cycles

are consumed by memory copy (memcpy / memmove) opera-

tions [25, 47], a substantial overhead at that scale. Additionally,

waiting for copy completion adds “killer microseconds” [5] to

application processing which aren’t hidden by classical means

like out-of-order processing. As we will see in §II-C, most

CPU cycles for memcpy are spent stalled, waiting for memory.

CPU memory access latency is not expected to improve in

the future due to the classic “memory wall” problem, where

technological advances improve clock speeds for CPUs, while

memory latencies remain largely stagnant [7]. For example,

DDR5 improves memory bandwidth by up to 2× over DDR4

at a slight memory access latency cost [12]. In fact, memory

latencies may worsen in the future as cloud providers add higher

capacity memories at the expense of latency [17, 21, 32, 35].

Common use cases of memory copies are for temporary

buffers. Consider serialization and deserialization mechanisms

used to transfer objects across processes and servers [2, 3, 53].

During serialization, a process converts an object into a byte-

stream and sends it to another process. The receiving process

This work was supported by NSF grants 2212580 and 2212193.

then deserializes this stream, transforming it back into an object.

Both serialization and deserialization can involve many data

copy operations as data is moved between the object and the

byte-stream. Databases with multi-version concurrency control

(MVCC) often use a form of read-copy-update to maintain

transactional isolation [58]. Here, the transaction duplicates

data it wishes to modify. Modifications happen locally and

the duplicate is merged into the database during the commit

stage. Copies are also common in operating systems, such

as for many IO system calls, for memory defragmentation,

and for the fork system call. In many of these cases, only a

fraction of each copy may be accessed or modified, making

the remainder redundant. Further, many accesses occur with a

time delay and do not require eager execution of the copy.

A variety of techniques to reduce the overhead of copies have

been proposed [43, 44, 55, 61]. For example, Demikernel [61]

adds zero-copy APIs to IO stacks, along with programming

language based object ownership tracking features. zIO [49]

reduces copy overheads in the IO stack without API changes by

unmapping copied pages and marking these memory locations

as copy-on-access. When a copy is not accessed, the copy

latency is saved. Only accessed memory pages incur the copy

overhead upon first access. Unfortunately, existing techniques

have drawbacks. Zero-copy APIs require significant program

redesign to use efficiently. Existing transparent approaches,

such as zIO, have high page remapping overheads and thus

only provide benefits for large (>16KB) copies of which only

a small fraction (≤25%) is accessed, with high performance

penalties when this is not the case. Hardware offload techniques,

such as DMA engines, have high startup overheads making

them similarly impractical for smaller copies [52].

To alleviate the drawbacks of prior approaches, our proposal

relies on lazy execution of each memory copy. Laziness

is a common technique used across different domains in

computer science. When an expensive operation is requested,

laziness delays the operation until time of use. For example,

functional languages [20] use it to allow declaration of infinitely

sized data structures that consume limited memory—only

upon data access are the operations resolved and memory

is allocated. Operating systems use copy-on-write [48] to avoid

performing copies until pages are modified. Laziness provides

the advantage that penalties are paid only upon use.

Recent advances in memory and processing logic have

allowed significant compute logic to be placed near memory
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modules, such as within the memory controller [39]. Prior

work has taken advantage of this to integrate tasks such as

encryption [36], data address remapping [62], or logging [59]

within the memory controller. As all memory accesses are

marshaled by the memory controller, we believe it is the ideal

place to improve data copying mechanisms.

We propose performing Memory Copies lazily at the Memory

Controller, i.e., (MC)2. (MC)2 augments the memory controller

to allow programmers to issue a lazy memcpy operation on a

source and destination buffer. When any CPU or cache writes

to the source buffer or reads from the destination buffer, the

memory controller performs the copy lazily. At all times, data

appears to the program as if it had been copied eagerly. (MC)2

allows applications to avoid the latency of copying in the critical

path while only exhibiting overheads for copied data that ends

up accessed. (MC)2 also provides the CPU further opportunities

to hide copy latencies through prefetching, accelerating copies

even in cases where most data is accessed.

(MC)2 enhances the memory controller with a Copy Tracking
Table (CTT) containing details of prospective copies to be

performed lazily. On a memcpy, instead of performing the

copy, a new CPU instruction sends a message to the memory

controller with the source address, destination address, and

copy size which are inserted as an entry in the CTT. When

a destination cacheline is read from or a source cacheline is

written to, the memory controller consults the CTT, reads the

source cacheline from memory, then copies it to the destination,

i.e., a lazy copy is performed. On a destination cacheline write,

the CTT entries are modified to stop tracking the cacheline.

In summary, we make the following contributions:

• We propose a new hardware system, (MC)2 that supports

lazy memcpy operations. Programmers may use (MC)2 via

a set of new instructions, a memcpy_lazy C function,

or transparently via a dynamic link library that replaces

the standard C library memcpy function.

• We implement and evaluate (MC)2 in the gem5 [6] cycle-

accurate simulator. (MC)2 has only ∼0.2% area overhead

and a bank leakage power of 33.8 mW.

• We demonstrate the improvement (MC)2 brings for

server-class workloads, with the Protobuf [19] benchmark

showing 43% lower runtime, MongoDB’s [38] insert

operations showing 16% lower latency, and Cicada’s [34]

transactions having up to 78% higher throughput. (MC)2

also accelerates common OS operations, like huge page

copy-on-write faults that have up to 250× lower latency,

and IO buffer copies with up to 99% higher throughput.

We have made our code available at https://github.com/

AKKamath/MCSquare-ISCA24 to aid further research.

II. BACKGROUND

We begin by describing the operation of memory copies

down to the hardware architectural level (§II-A). We then look

at how and why different types of applications make frequent

use of memory copies (§II-B). Finally, we look at the overhead

of copying in these applications and determine the hardware

architectural source of the overhead (§II-C).

Core
CU/ALU

TLB Private $

Core
CU/ALU

TLB Private $

Core
CU/ALU

TLB Private $

Last-level $

Interconnect

Memory
controller

Memory
controller

Memory
module

Memory
module

Fig. 1: Base memory system architecture.

A. Memory copy operation

Memory copies (memcpys) are used to transfer a given size

of data from a source buffer to a destination buffer. These

buffers do not overlap. There are four principal operations

involved in a memcpy: load, store, test, and loop [47]. The load

fetches data from the source buffer, the store places it into the

destination buffer. The test operation checks whether the current

copied size matches the provided size. If not, the loop operation

restarts the process for the next iteration. Optimizations to

memcpy typically involve taking advantage of CPU instructions

that support data movement at larger granularity for higher

throughput, such as SIMD instructions [9, 26].

While out-of-order and speculative execution allow for some

parallelism among iterations of copying, prior work [23] has

found that this is largely limited. As the number of copy loop

iterations being performed increases, the CPU reorder buffer

quickly fills, forcing further iterations to wait. This brings

memory access latencies into the critical path of the copy, an

effect we will quantify in §II-C.

Memory system effect on memcpy: First, to clearly under-

stand how the memory system affects memcpy overhead, we

briefly describe common memory system hardware architecture,

shown in Figure 1. It consists of a set of CPU cores, each

with their own private cache and a shared last-level cache

(LLC). The system also contains a set of memory modules

with memory controllers responsible for issuing operations to

them. An interconnect connects the memory controllers to the

CPU cores via the caches.

For memory read operations, the system first probes the

CPU’s private cache and the shared LLC to locate the requested

data. If unsuccessful, the system transmits the access via the

memory interconnect to the appropriate memory controller.

This controller then sends a request to the memory module

and, upon retrieval, forwards the data to the core via the caches.

In contrast, write operations typically involve a direct write

to the cache, with the data eventually reaching the memory

through subsequent cache evictions.

In this architecture, memory access latencies become pro-

gressively worse with distance from the CPU core making the

access. The typical dynamic range of memory access latencies

can span up to 3 orders of magnitude, from a few nanoseconds

for L1 cache access to hundreds of nanoseconds for CXL-

attached DRAM and NVM. It is important to note that reads

1113



Fig. 2: Many use cases have significant copy overhead.

incur access latencies on the critical path, while write latencies

may be hidden by CPU write buffers and the cache. Thus,

reads from the source buffer that miss in the cache have the

biggest effect on memcpy overhead by stalling the CPU.

B. Utility of memory copies

We examine a few use cases where memory copies provide

substantial utility. Many of these use cases involve copies to

create temporary buffers. Temporary buffers are widely used

due to the strong isolation and ownership guarantees that they

provide. Data that needs to be shared by multiple components

of an application can be copied into temporary buffers, giving

each component its own local copy. These components can

then access and modify data in the buffer without risk of

interference by other components. This simplifies program

logic, as multiple components of an application do not need to

synchronize for local buffer access. In many of these cases, the

utility is so great that copies into temporary buffers are used

even if not all of the copied data is modified or even accessed.

Serialization: Serialization is a technique used to convert data

structures into a format that can be easily transferred between

processes. For example, Google’s Protobuf [3] is a popular

library used for language-agnostic serialization. The process

of serialization involves taking a data structure and converting

it into a stream of bytes. For this, a buffer is allocated and the

data structure is processed and often copied into the buffer. The

buffer is then sent to another process, where it is deserialized,

i.e., converted back into data structure form.

Many works in the field of ML [24, 57, 67] have noted

that copy overheads incurred during serialization have made

multiprocessing in Python infeasible. Similarly, prior work [27]

developed an accelerator for Protobuf due to the high serial-

ization and deserialization overheads, including copies.

IO buffers: Prior work [49] has noted that IO-intensive

applications and the operating system IO stack often make

several redundant data copies. Applications like Redis make use

of copied buffers to pass data between independent subsystems.

These subsystems can modify the data for their specific purpose

without having to worry about other subsystems modifying

or freeing the buffer, e.g., one subsystem may log data while

another inserts it into a hash table. These copies could have

been avoided by keeping track of buffer ownership, but this

involves complicated, fine-grained memory management and

book-keeping to ensure buffers are not freed or modified before

subsystems have finished reading.

Fig. 3: Source of Protobuf memcpy overhead.

Multi-version concurrency control (MVCC): Traditional

methods of isolation involve the use of locks to ensure that

data being modified is not simultaneously read. However, in

cases of high contention, this leads to high wait times between

readers and writers. To avoid this, in MVCC [58] databases

writers instead create copies of tables or tuples being written to

and only modify their local copy. At commit, these copies are

integrated into the main database. This ensures readers do not

end up reading partially modified data. However, this comes

at the tradeoff that writers may end up copying data that does

not end up being modified.

C. Cost of memory copies

Many use cases across these application domains exhibit

high copy overhead. Figure 2 shows the copy overhead for

four such use cases which we obtained by running applications

on an Intel Skylake server, measuring CPU cycles attributed to

memory copy using Linux perf [13]. We see that copy overhead

in terms of cycles spent in memcpy can be up to 68%.

Protobuf runs a workload from Google’s Fleetbench

suite [19] that executes Protobuf operations based on traces

from Google’s servers. Within this workload, operations such

as MergeFrom* make heavy use of copying to move data

between buffers. MongoDB [38] is a popular NoSQL server that

prior work [49] has shown exhibits redundant copy operations

to manage IO buffers. Beyond IO, MongoDB also copies

inserted fields into an in-memory B-tree for indexing, as well

as a log—all of which contribute to the copy overhead shown.

Cicada [34] is an MVCC relational database that makes use

of copies during write operations for transactional isolation.

fork [48] is a common system call used to create a child

process. The new process inherits a virtual copy of the memory

of the parent process. This is done by creating a copy of the

parent page table, then marking all pages as copy-on-write

(COW). When a page is modified, a page fault is triggered and

the page is copied. As seen in Figure 2, a significant portion

of this page fault handling is spent on copying data for 4KB

pages. For huge pages, this overhead can reach 99%.

Virtual snapshotting [29, 33] is a technique used by in-

memory databases that takes advantage of this feature to take

consistent snapshots of the database. This is done by launching

a new process whenever a snapshot is needed. The new process

then has a virtual copy of the entire in-memory database.

While extremely useful, this technique can have high copy

overheads in the critical path. For this reason, databases like
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Fig. 4: Distribution of Protobuf memcpy sizes.

Redis advocate against the use of huge pages [45] due to the

copy overhead causing high operation latency spikes.

Memory access stalls are the source of copy overhead: To

understand the source of copy overhead in more detail, we

perform a deeper analysis of the Protobuf workload. Figure 3

shows memory access statistics obtained from perf during the

memcpy calls of the Protobuf workload. We see that more than

25% of data accesses end up missing in the cache and have to

be serviced from memory. More than 90% of the time, at least

one instruction within the CPU is waiting for a memory access

to be serviced (Mem miss cycles). These instructions take up

a slot in the CPU’s reorder buffer (ROB) and can reduce the

CPU’s effective throughput by blocking further instructions

from entering the ROB [23]. Due to this, for more than 60%

of the cycles spent in memcpy, the CPU is completely stalled

(Mem miss stall cycles).

Many memcpys are too small for OS-based avoidance: We

also analyzed the sizes of memcpy operations executed by

the Protobuf workload, shown in Figure 4. We find that the

majority of copies (∼ 56%) copy a single kilobyte. An ideal

solution to resolve this overhead must thus be able to speed

up sub-page sized copies. Existing OS techniques [49] that

require page-sized or larger copies cannot provide any benefit.

III. (MC)2 DESIGN

(MC)2’s primary goal is to eliminate copy overhead in the

critical path. (MC)2 has to accomplish this while ensuring

data consistency. Figure 5 contains all the modifications and

new features (MC)2 introduces to accomplish these goals. The

left side shows the modifications we make to the memory

controller. The right side shows two instructions we introduce,

along with the software support that we provide for (MC)2.

We now cover the hardware changes made to support (MC)2,

then look at its software interface and how memcpy operations

can be transparently replaced with their lazy alternative.

A. (MC)2 memory controller design

We start by making changes to the memory controller (MC)

to provide support for lazy copies. For clarity, we use the term

prospective copy to refer to a lazy copy that the processor has

requested. This copy is not immediately performed. Instead,

we add a copy tracking table (CTT) to each MC to track each

prospective copy. We use the term lazy copy to refer to the
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Fig. 5: (MC)2 modifications introduced.

act of finally copying data from the source to the destination,

typically triggered by an access to either buffer that requires

the copy. To manage in-progress writes to source buffers,

we extend each MC’s existing write pending queue with a

bounce pending queue (BPQ) to hold the corresponding write,

while the lazy copy is performed. The left side of Figure 5

depicts these changes with our additions highlighted in purple.

We assume memory accesses reaching the memory controller

are at cacheline granularity, typical of most modern systems.

(MC)2 supports prospective copies at a byte granularity, but

we simplify MC design by restricting tracked destination

buffers and lazy copy sizes to be of cacheline granularity.

A software wrapper (III-D) converts byte-granularity memcpys

to equivalent cacheline-granularity prospective copies.

1) Copy Tracking Table (CTT): We add a copy tracking table

(CTT) to each MC that tracks prospective copies. The CTT is an

SRAM-based module that performs lookups using the physical

address of memory accesses. These lookups are in parallel with

the memory access, avoiding overheads on the critical path

of access. The CTT ensures that reads to destination buffers

are correctly routed (bounced) to corresponding source buffers.

As the source and destination buffers may be placed across

multiple memory modules, we ensure that CTTs across MCs are

kept consistent. This is done by snooping the interconnect for

broadcast messages informing the MCs of table modifications.

Table entries: Each entry in the CTT occupies 16 bytes

consisting of a 52-bit source physical address, 52-bit destination

physical address, 21-bit size, an active bit (as shown in Figure 5)

and 2 unused bits. Addresses are tracked with 52 bits as this

is the upper limit of physical address sizes that most systems

support [14, 60]. A 21-bit size allows a single entry in the CTT

to track a lazy copy of up to 2MB, the size of a huge page.

Many copied buffers do not exceed this size. Further, memory

fragmentation causes larger physically contiguous regions to

be rare [64], making larger tracking granularities unnecessary.

Table logic: The CTT contains logic to ensure that tracked

destination buffers do not overlap. Specifically, if an existing

entry contains (part of) a destination buffer that a new operation

is inserting, the existing entry is removed (or resized) so that

the new and existing entries’ destination buffers do not overlap.

This corresponds to the case where data is copied to a buffer and

then new data is copied to the same buffer. Every destination

buffer thus has a unique source buffer.

In addition, when a new entry is inserted into the CTT, we
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check whether any part of the source buffer of the new entry

was a destination buffer in an existing entry. If so, we split the

new entry with the overlapping part using the source buffer

of the existing entry. For example, a lazy copy operation is

initiated with buffer A being copied to buffer B (copy 1), then

buffer B being copied to buffer C (copy 2). The entry in the

CTT corresponding to copy 2 will show A being copied to C.

This avoids chains of copies, simplifying dependence tracking.

The CTT also merges multiple lazy memcpy operations to

a single entry when it finds that the copies are to contiguous

source and destination buffers. This can occur when multiple

copies are to logically separate entities within the same buffer,

e.g., element-by-element copies of an array.

Required table storage: We allocate 2,048 entries in each

CTT to allow it to track a large number of active copies.

The CTT access latency is negligible compared to the DRAM

access latency, avoiding overheads in the critical path (see §V).

Altogether, the CTT uses 2,048×16B or 32KB of SRAM.

Avoiding CTT overflow: If the CPU continuously issues lazy

copy operations, the CTT can fill up. To avoid this, copies

are performed by the MC asynchronously, with entries freed

on copy completion. The tradeoff is that asynchronous copies

lead to increased memory bandwidth utilization and reduce

the potential of avoiding redundant copies. Conversely, waiting

until the CTT is full before copying causes stalls to the CPU

as it waits for entries to be freed.

To strike a balance, (MC)2 starts lazy copying when the

CTT becomes 50% full. For this, the MC identifies entries

with the smallest size and creates read requests for their source

buffers. Once the read is complete, the data is written to the

destination buffer and the entry is then removed from the

table. For large servers capable of issuing sizeable bursts of

copies, the CTT frees multiple entries in parallel, leveraging

the increased bandwidth of these servers (§V-C). This requires

only a few bytes for counters to keep track of the number of

entries being freed.

2) Bounce Pending Queue (BPQ): If data in a source buffer

is being modified, we must ensure that this data is first copied to

its destination buffer(s). To handle this, we extend the existing

write pending queue (WPQ) in the MC with an additional

bounce pending queue (BPQ). The BPQ contains writes to

the source buffer that are waiting for data to be copied to
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Memory Memory
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Fig. 7: Lazy copy on destination buffer access.

the destination buffer(s). Separating the BPQ from the WPQ

prevents stalling other writes that could have proceeded. If the

number of writes to source buffers exceed the size of the BPQ,

further writes are stalled by the MC, creating back-pressure on

the caches. We find that a small BPQ supporting 8 cachelines is

sufficient to absorb bursts of source buffer writes. We explore

the impact of the number of CTT and BPQ entries, and the

asynchronous copy threshold in more detail in §V-C.

B. (MC)2 functionality

We examine how (MC)2 interacts with the CPU and memory

system and how data consistency is preserved with lazy copies.

1) Lazy memcpy: Requesting a prospective memcpy involves

3 main steps, shown in Figure 6. The source buffer is shown

in maroon and the destination buffer is shown in purple.

1 The CPU issues MCLAZY, creating a packet containing

the source buffer address, destination buffer address, and copy

size. It sends this packet to the caches.

2 Once the packet reaches the caches it triggers writebacks

for all the cachelines contained in the source buffer, and

invalidates the cachelines contained in the destination buffer.

The caches’ FIFO write buffer ensures that the writebacks

reach the MC before the MCLAZY packet. This guarantees that

further MC-observed writes were issued after the lazy copy

operation, necessary for memory consistency.

3 The packet is then broadcast across the memory inter-

connect, and all the MCs insert a new entry containing the

details of the lazy copy into the CTT.

2) Memory access: The CTT is consulted for every MC-

observed memory access. If the memory access is to one of

the tracked source or destination buffers, (MC)2 may need to

specifically handle it. There are four types of such memory

accesses. Namely, reads from destination, reads from source,

writes to destination, and writes to source buffers. We will

discuss each one in detail.

Read from source: As these accesses do not modify data

and the source is up-to-date in memory, they proceed without

interference.

Write to destination: If a write to a destination buffer reaches

the MC, we no longer need to track it, as the memory will now

contain fresh data. The MC removes the entry from the CTT on

completion of the write (or splits the entry if it spans multiple
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cachelines). It also broadcasts a message on the interconnect

for the other MCs to update their CTTs.

Read from destination: As this is a prospective copy, the

data in the destination buffer in memory is stale. Retrieving

the correct data involves 3 steps, shown in Figure 7:

1 The MC fetches the appropriate source buffer address

corresponding to the destination address from the CTT.

2 It bounces the request to the MC containing the source.

This MC then reads the respective source cacheline from

memory and stores the data in the destination response packet.

3 This packet is sent back to the core as if it was read

from the destination. As we now have the up-to-date version

of the destination cacheline, a copy of this packet is also

sent as a write to the MC containing the destination buffer,

eventually removing the corresponding entry from the CTT.

This prevents future accesses to the cacheline from suffering

further overheads.

Write to source: If a write to a source buffer cacheline reaches

the MC, we need to execute a lazy copy. To do so, the write is

first held in the BPQ and a read to the same source cacheline

is generated and sent to memory. Once the source cacheline

is obtained from memory, the MC generates packets for each

destination cacheline that has a prospective copy with the

source. The data read from the source cacheline is copied into

these packets. The completed destination cachelines are then

written to memory and corresponding CTT entries are removed

(or resized). Once complete, the corresponding BPQ entries

are written to memory.

Unaligned copies: If source and destination copy buffers

are not cacheline-aligned with each other, a lazy copy to a

destination cacheline may require data from multiple source

cachelines. This results in multiple bounces to fetch the entire

destination cacheline. For example, if a prospective copy was

from physical address 100 (source) to address 512 (destination),

we require two bounces to reconstruct the destination; the first

access to address [64 - 127] and the second to [128 - 191],

which may lie in separate memory modules.

Reducing bandwidth contention: When a destination buffer

is read, a copy of the reconstructed cacheline is sent as a write

to memory. To avoid contending on memory bandwidth, if the

WPQ of the destination MC is more than 75% full, it rejects

the write to prioritise the memory bandwidth for accesses from

the caches. Otherwise, it writes the destination to memory

and removes (or resizes) the corresponding CTT entry. Further

reads to this destination cacheline are serviced from memory

as normal. §V-A2 evaluates the associated overhead reduction.

C. (MC)2 ISA design

We provide two new instructions for programmers to take

advantage of lazy memcpy, shown on the right in Figure 5.

Lazy copy: MCLAZY enables the lazy memcpy. It takes three

register operands. The first register contains the virtual address

of the destination buffer, the second register contains the virtual

address of the source buffer, while the last register contains

the lazy memcpy size. The destination buffer cachelines

1 def memcpy_lazy(dest, src, size):
2 # Cacheline align dest
3 left_fringe = ALIGN_REM(dest, CL_SIZE)
4 memcpy(dest, src, left_fringe)
5 dest += left_fringe
6 src += left_fringe
7 size -= left_fringe
8 while size > 0:
9 # Calculate remaining size in page

10 src_off = ALIGN_REM(src, PAGE_SIZE)
11 dest_off = ALIGN_REM(dest, PAGE_SIZE)
12 # Pick minimum size left as lazy copy size
13 copy_size = min(min(src_off, dest_off), size)
14 if copy_size < CL_SIZE:
15 memcpy(dest, src, copy_size)
16 else:
17 # Make copy_size a multiple of CL_SIZE
18 copy_size &= ~(CL_SIZE - 1)
19 MCLAZY(dest, src, copy_size)
20 dest += copy_size
21 src += copy_size
22 size -= copy_size
23 mfence()

Fig. 8: Lazy memcpy function pseudocode.

encompassed by the operation are invalidated while the source

buffer cachelines are written back from the cache (see §III-B1).

Alignment requirements: The destination address must be

cacheline-aligned and the value contained in Rsize must be a

multiple of the cacheline size. This simplifies the MC logic,

as destination cachelines are guaranteed to be lazily copied

in their entirety, and avoids partial cacheline invalidations for

the destination buffer. In §III-D we shall see how a software

wrapper removes these requirements.

The source and destination must each be contiguous in

physical memory. For user-space applications with buffers span-

ning multiple pages, the instruction must be called separately

for each page. The instruction requires at most two address

translations, one for the source and one for the destination.

Instruction parallelism: MCLAZY obeys memory consistency

similar to CLFLUSHOPT and CLWB [22]. This means that

separate invocations of the instruction proceed in parallel,

without serialization required for stores in the x86-TSO memory

model [41]. To enforce ordering with future operations, an

MFENCE or SFENCE operation must be called.

Freeing: Finally, we provide an MCFREE operation that takes

two operands: an address register and a size register. MCFREE
sends a hint to the MC that the buffer defined by the address

and size registers is no longer useful and can be freed. The

MC can remove all entries in the CTT where the destination

buffer is contained in the freed buffer. Data in the freed buffer

needs to be reinitialized before reuse, i.e., a read operation to

a freed buffer following an MCFREE call is undefined. This

instruction can be called within functions like munmap where

the buffer is guaranteed to no longer be used.

D. Software Design

C/C++ function: To remove constraints on the programmer,

we provide a C/C++ library function memcpy_lazy that has

the same semantics as a standard memcpy call. Internally, this

function calls MCLAZY for each page in the buffers and ensures

that the destination is cacheline-aligned.
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Fig. 9: (MC)2 simplified state transition diagram.

The pseudocode for this function is shown in Figure 8.

Here, CL_SIZE refers to the cacheline size, while the macro

ALIGN_REM returns the number of bytes required to align a

given address to a given alignment size. First, we identify the

number of bytes needed to be added to the dest address to

cacheline-align it (line 3). We then copy these bytes from the

source to destination (line 4). The destination is now cacheline

aligned. We then identify the number of bytes remaining in

the source and destination pages (lines 10 - 11) and pick the

smaller one (line 13). This ensures that the copy is being

performed on a single page for both the source and destination.

If this is smaller than the cacheline size, we manually memcpy

it (line 15). Otherwise, we make the copy size a multiple of

the cacheline size and call MCLAZY for it (lines 18 - 19). We

then repeat the process until the entire copy is complete. We

finally issue an mfence call to order the prospective copies

with future memory accesses (line 23). The read and write

operations of a standard memcpy are replaced by a MCLAZY
call per copied buffer page, enabling our lazy memcpy goal.

Memcpy interposition: We provide an additional interposer

library (copy_interpose.so) that converts memcpy calls

to lazy memcpy calls for legacy applications. This removes

the need to rewrite code to take advantage of (MC)2.

E. Data protection and correctness

We now look at (MC)2’s data protection and correctness

guarantees. For concreteness, we assume the x86 CPU architec-

ture and x86-TSO memory model [41], although (MC)2 may

be applied to other models with minor modifications.

Protection: As (MC)2 deals with only physical addresses,

regular address translation occurs within the CPU where page

protection bits are checked. If a process tries to copy data it

does not have access to, the MMU raises a page fault. On

unmapping pages, the operating systems zeroes out the newly

freed pages before providing them to new processes. This

eventually reaches the MC as writes, removing entries from the

CTT and avoiding data leaks from occurring between processes.

This ensures that (MC)2 does not expose data protection risks.

Memory consistency: (MC)2 must ensure that reads and

writes to source and destination buffers preserve memory

consistency. In (MC)2, each destination cacheline behaves

independently. This destination cacheline is a prospective copy

of a single source cacheline if they are cacheline-aligned. In

cases of misalignment, the destination is split across two source

cachelines. To examine the interaction of memory accesses

with (MC)2, we make use of a state transition diagram, seen in

Figure 9. States 1 - 4 cover the transitions for when source

and destination are cacheline-aligned. When misaligned, we

have additional states 5 - 6 .

Assume that S1, S2 and D are each cachelines, with S1 and

S2 being contiguous physical addresses. Part of S1 and S2

are prospective copies to the destination cacheline D, meaning

part of D’s data lies in S1 and part in S2, as seen in the top

of Figure 9. Note that S1, S2, and D may all lie in different

memory modules. The different states in the transition diagram

show the different possible states of the BPQ and CTT. State

transitions are caused by memory accesses by the CPU [in

black] or (MC)2 [in red]. To understand how (MC)2 provides

memory consistency, we shall now go through each state of

the diagram and analyze all the interactions and transitions to

see how the system reacts in each case.

1 We start with an empty CTT and BPQ. In this state, (MC)2

has no impact. On receiving a prospective copy, we transition

to state 2 .

2 In this state, the CTT contains an entry noting that S1

and S2 have been lazily copied to D. Writing to D removes

the entry from the CTT and transitions us back to state 1 ,

while reading S1 or S2 has no impact. Performing another

prospective copy with destination D retains us in the same

state, with the CTT entry being modified to contain the new

source(s). On writing to either S1 or S2 (denoted by Si), we

move to state 3 , where the write is kept in the BPQ.

3 This is a transitional state, where a bounce packet is

generated which reads S1 and S2 from memory (and not

the BPQ) and then writes to cacheline D. On completion of

the write, we move to state 4 , denoted by the “Bounce D”

transition. A similar transition occurs when the CPU directly

writes to D. Reads and writes to Si issued by the CPU are

merged and serviced directly from the BPQ. On a write to Sj

(j != i) we move to state 5 .

4 This is also a transitional state. D is removed from the CTT

as its data has been retrieved and written to memory, i.e., the

lazy memcpy is complete. Reads and writes to D are serviced

normally by the memory as the CTT does not contain an entry

for it. The BPQ writes Si to memory to move back to stable

state 1 . If Si is a common source for multiple prospective

copy destinations, e.g., D1, D2, D3..., the BPQ must wait until

all entries with Si as source are removed from the CTT before

writing Si to memory.

5 This is also a transitional state, where both S1 and S2 are

kept in the BPQ (denoted by Si and Sj). Similar to state 3 ,

all reads and writes to S1 and S2 from the CPU are serviced

by the BPQ, while the bounce packet for D reads directly from

memory. Writing to D or completion of the bounce operation
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moves us to state 6 .

6 Similar to state 4 , D is removed from the CTT. S1 and S2

are written back to memory to move back to state 1 . It may

occur that S1 and S2 lie in different memory modules operated

by different MCs, with both independently generating identical

bounce requests for D. One may complete, while the other is

still pending. For this, bounce requests for D are dropped on

reaching this state.

In all the transitional states where the BPQ contains either

S1 or S2 ( 3 - 6 ), prospective copies involving S1 or S2 are

stalled until S1 and S2 have been written back to memory.

F. Performance Tradeoff Discussion

While (MC)2 provides the same semantics as the standard

memcpy and aims to accelerate it, there are performance

tradeoffs. We discuss them in this section.

Cached source buffers may harm performance: When the

source buffer is already present in the cache, the overhead

of copying is low as the CPU fetches data from the cache

instead of memory. Replacing these copies with (MC)2 could

harm performance. Despite this, we shall see in V-A1 that the

latency of (MC)2 is not significantly worse than a cached copy.

Reduced cache pollution: Cache pollution is a common

problem associated with buffer copies [52, 66], where the

destination of the copy is not immediately accessed after the

copy. As (MC)2 explicitly invalidates destination buffers from

the cache, it avoids this problem.

Copy-and-access may harm performance: If a destination

buffer is immediately accessed after a prospective copy,

(MC)2 could reduce performance, as the destination buffer’s

cache lines have been invalidated. We shall see in V-A2 that

prefetching eliminates this performance impact in many cases.

Memory footprint: Prior work, such as zIO [49], performed

copy elision by unmapping destination pages and marking

them copy-on-access, reducing the memory footprint for copies

with unaccessed destination buffers. (MC)2 does not reduce

memory footprint, as both source and destination buffers must

be physically allocated by the OS before lazy copying. This

allows (MC)2 to remain transparent to the OS and support lazy

copies at sub-page granularity, avoiding hardware interrupts

and page faults on access to destination buffers. Nevertheless,

for an application like Protobuf, we found that zIO provided

no memory footprint reduction due to sub-page sized copies.

For MongoDB, we found only a modest 6 – 8% reduction in

memory caused by copied data frequently being accessed.

IV. EVALUATION METHODOLOGY

We simulate the performance of (MC)2 by extending GEM5-

v22.1 [6]. Table I gives the configuration details of our

simulation. Our system resembles a scaled-down server node.

We use CACTI 7.0 [4], a tool that calculates cache spec-

ifications based on provided parameters, to obtain the CTT

access latency and area. For our configuration, with a 22 nm

transistor size, we find that the CTT area is 0.14 mm2 which

is negligible compared to I/O die areas of 100 mm2 [40]. The

bank leakage power is 33.8 mW. The CTT latency is 0.79 ns,

TABLE I: Simulated configuration.

Hardware

CPUs 8 Clock speed 4 GHz

Private L1
cache

64 KB/CPU,
Stride

prefetcher

Shared L2
cache

2 MB, Stride
prefetcher

DRAM size 3 GB
DRAM

channels 2

DRAM
config. DDR4 BPQ size 8 entries

CTT entries 2,048 CTT latency 0.79 ns

Software

OS kernel Linux 5.7.0 Distribution Ubuntu 20.04

significantly lower than typical DRAM access latencies (15 -

90 ns [12]). The CTT latency is incurred when the destination

of a prospective copy is read. The entry in the CTT is looked

up and the ongoing access is preempted, incurring the CTT

latency. The packet is then bounced towards the source.

Throughout our evaluation we make use of our C wrapper

function memcpy_lazy. To accurately model the performance

of cacheline writebacks required by MCLAZY, this function calls

the CLWB instruction [22] for each cacheline that needs to be

written back. It also cacheline-aligns the provided destination,

calling memcpy for unaligned fringes (as mentioned in §III-D).

Baselines: We compare our approach to a baseline memcpy

operation. We also compare against zIO [49], a state-of-the-art

approach for OS-assisted zero-copy IO. zIO elides memcpy

operations and tracks the copies in a skiplist. The page table

entries are marked as copy-on-access using userfaultfd [1]. On

a page fault, zIO allocates physical memory for the destination

buffer and performs the copy. We modify zIO to perform elision

on all memcpy calls instead of just IO-based copies.

V. EVALUATION

We evaluate (MC)2 and tease out the performance im-

plications of the lazy memcpy technique through a set of

microbenchmarks. We then look at the full-system performance

of (MC)2 through benchmarks and applications consisting of

Google’s Protobuf, MongoDB, and Cicada. We also analyze

the impact of (MC)2 on Linux kernel buffer copies and huge

page faults. We conclude by examining (MC)2’s sensitivity to

different configuration parameters.

Our evaluation answers the following questions:

1) How much lower is (MC)2’s memcpy critical path

overhead? What are the main sources of overhead for

(MC)2’s memcpy? (§V-A1)

2) What is the impact of lazily copying data upon access?

(§V-A2)

3) What benefit does (MC)2 provide to applications? (§V-B)

4) How do (MC)2’s parameters impact its performance?

(§V-C)
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Fig. 10: Copy latency for native memcpy, zIO and (MC)2.

Fig. 11: Overhead breakdown of memcpy_lazy.

A. (MC)2 performance implications

We first analyze the performance tradeoffs that lazy memcpy

provides for different memcpy scenarios.

1) Copy latency and overheads: We examine copy latency

of (MC)2 by performing memcpy operations on various sizes

of data regions prefaulted into memory. We then take a look

at the breakdown of overhead that (MC)2 incurs.

Uncached source buffer: Figure 10 shows the latency for

zIO memcpy elision and (MC)2 lazy memcpy compared to a

baseline of native memcpy (lower is better). (MC)2 enables

cacheline-sized lazy copies, with speedups for copies 1KB and

larger. It has a significantly lower overhead than zIO for smaller

copies, and is 55% to 11× faster than memcpy for copies of a

kilobyte and larger. As zIO relies on page table copy-on-access

for elision, it requires copy sizes of at least a page to be able to

perform elision. The overhead of unmapping pages and issuing

TLB shootdowns ends up degrading performance for smaller

copy sizes, with zIO performing worse than native memcpy for

16KB copies. zIO’s cost becomes justified for copy sizes of

64KB or larger, with a speedup of 23× over memcpy at 4MB.

Despite this, we shall see that when the destination buffer

is accessed, zIO suffers significant mis-speculation penalties,

degrading the overall performance.

Cached source buffer: We also analyze the performance of

memcpy when the source buffer has already been touched

before the operation leading to it being cached (Touched

memcpy). We see that this outperforms (MC)2 for smaller

sizes, however, for 16KB and above (MC)2 is able to provide

a similar memcpy latency. This shows that (MC)2 can be used

to provide copy latencies similar to cached copies, regardless

of whether the data is present in the cache.

Fig. 12: Sequential destination buffer access overhead.

Fig. 13: Random destination buffer access overhead.

Overhead breakdown of memcpy_lazy: The primary

overheads for (MC)2 memcpy are writing back cachelines

and sending the prospective copy operation to the memory

controller. We separately measure these latencies, shown in

Figure 11 (lower is better). For copies smaller than 1KB, CLWB
instructions can proceed in parallel, leading to minimal impacts

in performance. Above 1KB, these operations serialize due

to the CPU load/store queue and ROB becoming full. The

lazy copy packets being sent to the MC proceed in parallel,

reducing their impact.

There is scope for improving cacheline writeback latencies.

For large copy sizes, a single full-cache writeback operation

akin to INVD [22] could be introduced, providing a single

fixed overhead for cacheline writeback regardless of copy size.

For smaller copy sizes, a wider writeback operation could be

provided (for example, operating at a page granularity), further

reducing its overhead. We therefore view the current overheads

of (MC)2 prospective copies as a conservative estimate.

2) Data access latency: As our approach lazily copies data,

we end up with increased data access latencies for buffers of

prospective copies. We now look at the impact this latency has

and optimizations that allow us to minimize it.

Sequential destination buffer access: For this experiment,

we measure the runtime of copying a 4MB source to a

destination buffer followed by iterating through the destination

buffer reading elements sequentially and accumulating the

values into a local variable. This is essentially a streaming

access pattern, commonly found in operations like serialization

and deserialization. We purposely misalign the source and

destination buffer so that (MC)2 suffers the increased penalty

of two bounces during destination access.

Figure 12 shows the runtimes of zIO and (MC)2 relative
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to native memcpy for different access proportions of the

destination buffer. While zIO is around 70% faster than (MC)2

when the dataset is not accessed, we see that this swiftly

degrades, with zIO performing worse than native memcpy

when half or more of the dataset is accessed. This is because

zIO performs copy-on-access and has to handle page faults

that add additional overhead.

Interestingly, we see that (MC)2 consistently outperforms

the native memcpy for all access proportions with a worst case

runtime of 80% that of memcpy. This is because the cache

prefetcher predicts the sequential access pattern and prefetches

the destination cachelines before the CPU requests them. The

prefetches allow some of the extra latency caused by bouncing

to be hidden. We can see that, when prefetching is turned off

(No prefetch), (MC)2 performs up to 21% worse than native

memcpy. Conversely, if the source and destination buffers

are both cacheline-aligned with each other (Aligned), (MC)2

is able to perform even better at up to 57% the runtime of

memcpy, as destination accesses bounce only once.

Random access: We repeat this experiment with a random

access pattern. We perform a pointer-chasing experiment where

each element contains the index of another element in an

array contained in the copied buffer. We ensure that every

index is unique and randomly distribute the indices among the

elements. This brings the memory access latency to the critical

path, as every subsequent access is dependent on the value

of the previous one, preventing any data access parallelism or

prefetching. This type of access pattern is relatively uncommon

and degrades the benefit of caches.

Figure 13 shows runtimes of zIO and (MC)2 relative to

native memcpy. As the access pattern is now random, zIO

at 12.5% access suffers from frequent page faults causing its

runtime to be 2.1× native memcpy. Once more of the dataset is

accessed, these accesses occur to already copied pages, causing

the runtime to decrease to 1.3× that of memcpy.

(MC)2 on the other hand, has a much lower runtime of 92%

of memcpy. Our optimization—writing back the destination

cacheline after it bounced—is a significant source of this

reduced overhead. When the completed read is not written back

(No writeback), the latency degrades to at most 1.6× memcpy,

performing worse than zIO. This is because every memory

access bounces twice to reconstruct the destination value,

leading to an effectively doubled memory access latency. As

before, when the destination and source buffers are cacheline-

aligned with each other (Aligned), (MC)2 outperforms memcpy
with a worst case runtime of 88% of memcpy. Here, the memory

copy latency was reduced by (MC)2, and the memory access

latency is only slightly higher than normal due to destination

accesses bouncing only once.

B. Application Workload Evaluation

Google Protobuf: To evaluate the effectiveness of (MC)2 on

a real workload, we ran the Protobuf workload provided in the

Google Fleetbench [19] benchmark suite. Fleetbench consists of

workloads dedicated to common “hot” library functions using

traces obtained from production servers. Google’s Protobuf

Fig. 14: Runtime of Protobuf.

Fig. 15: MongoDB average insertion latency.

library [3], which provides a language-agnostic framework

for data serialization, is a major workload in Fleetbench.

The Protobuf workload calls different Protobuf functions with

message sizes obtained from server traces. We accelerate this

workload with (MC)2 using the library interposer to redirect

memcpy calls 1KB and larger to our lazy_memcpy function.

In Figure 14 we see the runtime obtained for the baseline

Protobuf workload compared to the runtimes of the workload

with zIO and (MC)2. We find that all memcpy operations were

below page size preventing zIO from performing any elision.

(MC)2 provides 43% speedup over vanilla memcpy.

MongoDB: We examine (MC)2’s effectiveness in eliminating

redundant copies in IO buffers by running MongoDB [38]

with (MC)2 and zIO’s MongoDB copy elision interposer [50].

We replicate the experiment performed by Stamler et. al. [49],

where a client runs the YCSB [11] load phase with 100KB

fields and 10 fields per insertion. The load phase performs

100% inserts in a uniform random distribution. We scale down

the number of insertions to 50 to make the simulation time

feasible. We run this workload 3 times and report the average

insertion latency in Figure 15. (MC)2 speeds up insertions

by 15.5%, while zIO slows down insertions by 9.7% due to

frequent accesses to copied data.

For large copy sizes, zIO is supposed to provide better copy

latencies than (MC)2 (§V-A1). Despite this, (MC)2 provides

better performance than zIO as it does not have the page fault

penalties that zIO experiences when prospective copies are

accessed. MongoDB copies data into an in-memory B-tree

used for indexing and into a log during transaction commit.

During this process, it accesses copied data. For zIO, this

triggers a page fault, forcing it to perform a copy on the

accessed page, which (MC)2 avoids.

Multi-version concurrency control: Multi-version concur-

rency control (MVCC) [58] is a popular database transactional

consistency technique. With MVCC, write transactions that

modify data first create a local copy of the tuples being modified.

Only the local copies are modified, creating a new version of
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(a) 1 thread. (b) 8 threads.

Fig. 16: Read-modify-write MVCC database throughput.

(a) 1 thread. (b) 8 threads.

Fig. 17: Write-only MVCC database throughput.

the data upon commit. These new versions are hooked back

into the main database, discarding the old data. This allows

concurrent read transactions to read consistent data from the

main database without requiring locks.

Transactions often only update a small portion of a tuple,

incurring unnecessary copy overhead. For example, TPC-C has

frequent operations that update a single tuple attribute (e.g.,

decrementing the quantity of stock of an item [31]) which

updates only 1–2% of the tuple. Sub-tuple copies drastically

increase the complexity of version management and are thus

avoided by databases [58].

(MC)2 allows MVCC databases to utilize tuple-wise copying,

while paying the copy penalty only for the portions updated. To

demonstrate this, we enhance the Cicada MVCC database [34]

with (MC)2. We perform repeated operations on a table with

8KB-sized rows, modifying different fractions of the tuples and

measuring throughput. The operations are split in a 50:50 ratio

between reads and updates, typical of write-intensive database

workloads [11]. We ran this experiment with one and eight

threads performing transactions to analyze performance when

latency-bound and bandwidth-bound respectively.

Figure 16 shows the transaction throughput of baseline

Cicada compared to (MC)2 when the updates are read-modify-

write (RMW) operations. The baseline reads data from memory

during memcpy then performs the RMW locally in the cache.

(MC)2 avoids the memory read during memcpy, and only

reads from memory the fraction of data being updated during

the RMW operation. For updates that modify less than 25%

of the tuple, (MC)2 provides up to 78% higher throughput.

For higher fraction of updates with one thread, the memory

read penalty of (MC)2 outpaces the copy speedup. With eight

threads the transactions are memory bandwidth-bound, and

as (MC)2 reduces memory accesses it consistently provides

performance improvement for update fractions less than 100%.

Figure 17 shows the transaction throughput when the update

operations are write-only. The throughput mimics that of

RMW because cache write misses issue read-for-ownership

(RFO) [22] that reads data from memory before writing to the

cache, incurring (MC)2’s read penalty. If the store operations

are replaced by non-temporal stores [22] that avoid RFO, we

see that (MC)2 is able to provide a higher throughput with one

thread than the baseline for all write fractions. Similar to the

previous case, for 8 threads the application becomes memory

bandwidth bound, leading to performance improvements until

the entire tuple is modified. We were unable to compare to

zIO as Cicada allocates memory using MAP_SHARED, which

zIO does not support.

Concurrent snapshots with huge pages: In-memory databases

make use of virtual memory snapshotting [29] to take con-

current database snapshots. They leverage the fork system

call to create a virtual memory snapshot in a child process. To

minimize overhead, fork does not copy memory to create the

snapshot. Instead, the parent and child map the same memory

as copy-on-write, copying memory pages lazily on writes [48].

With their large datasets, in-memory databases would like

to use huge page mappings to minimize TLB misses. However,

despite the use of huge pages reducing the direct overhead of

fork by over an order of magnitude due to smaller copied

page tables [63], huge page copy-on-write faults require larger

2MB copies, causing significant latency spikes. For this reason,

many in-memory databases advise against huge pages [30, 45].

To demonstrate how (MC)2 can mitigate this issue, we mod-

ify the Linux kernel’s copy_user_huge_page function to

use MCLAZY instead of copying the huge page immediately.
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Fig. 18: Write latencies with huge page copy-on-write.

Fig. 19: Linux pipe transfer throughput.

We run a program that initializes a 64MB memory region

using huge pages, calls fork, and then updates random 8-byte

elements in the 64MB region. We measure the latency of each

update using the RDTSC [22] instruction.

Figure 18 shows the latencies of the first 100 accesses, where

Native is the unmodified Linux kernel, and (MC)2 uses our

modified kernel. The native kernel experiences latency spikes

up to 455× during page faults. (MC)2 experiences spikes at

most 2× with worst-case latencies 250× lower than native.

(MC)2 reduces latency spikes caused by huge page copy-on-

write faults by over two orders of magnitude, while retaining

the benefits of huge pages.

User-kernel buffer copies: Copies between user and kernel

buffers upon system calls incur overheads across many appli-

cation domains. For example, cloud platforms heavily use the

POSIX socket interface for communication. Socket calls (e.g.,

send/recv) involve buffer copies that are exchanged with the

NIC via DMA [28]. Similarly, inter-process communication

like pipes and Unix sockets involve kernel buffer copies.

We modify the Linux kernel functions pipe_write and

pipe_read to make use of lazy copies instead of copying

data to/from a kernel buffer. We measure the latency of transfer

when a process sends data to another with these pipes using

RDTSC, then report the throughput in bytes/kilocycle.

Figure 19 shows the throughput for different transfer sizes.

For smaller sizes, the overhead of the system call dominates

over the actual data transfer time, leading to (MC)2 having

a small improvement in throughput. As these transfer sizes

increase, the throughput saturates with (MC)2 providing roughly

double the throughput of the native kernel.

(a) Wall clock execution time in milliseconds.

(b) Max-min normalized stalls due to full CTT.

Fig. 20: Protobuf performance, varying the number of CTT

entries and copy threshold.

C. Sensitivity studies

We now examine the impact of the different parameters of

the Copy Tracking Table and Bounce Pending Queue.

Copy Tracking Table (CTT): To identify the impact of the

number of CTT entries and the threshold at which we start

asynchronously freeing entries, we run Protobuf with a sweep

of various CTT sizes and thresholds, shown in Figure 20. The

performance difference between worst and best configuration is

around 5%, showing that varying the CTT parameters does not

drastically impact performance. When the CTT is small (1,024

entries), the CPU frequently suffers from stalls due to the CTT

being full (Figure 20b), negatively impacting performance. We

see a similar behavior with a high (i.e., 90%) copy threshold.

Interestingly, reducing the copy threshold does not negatively

impact performance. This is because (MC)2 limits the outstand-

ing asynchronous copies per memory controller, restricting the

memory bandwidth interference with the CPU. However, a

too small copy threshold leads to unnecessary copying and

underutilizes the CTT. We find that 2,048 entries with a 50%

copy threshold provides a small CTT without stalls.

Bounce Pending Queue (BPQ): To identify the performance

impact of differing BPQ sizes, we make use of a microbench-

mark that lazily copies a source buffer to a destination buffer,

overwrites the source buffer, then flushes the writes from the

cache. The microbenchmark then executes a fence operation,

bringing the overhead of writing to the source buffer into the

critical path. We repeat this experiment for varying buffer sizes.

Figure 21 shows the normalized runtime with different

BPQ sizes. A small BPQ fills up quickly, leading to stalled

writes. As the BPQ size increases, more writes are able to

proceed in parallel, reducing the runtime. Enlarging the BPQ

gradually receives diminishing returns, with 16 BPQ entries
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Fig. 21: Normalized runtime when source buffers are written

to with varying number of BPQ entries.

Fig. 22: MVCC database speedup with (MC)2, varying the

number of per-MC parallel CTT entry frees.

only providing on average 2% speedup over 8 entries, compared

to 2 entries providing 35% speedup over 1 entry.

Scalability: Modern servers provide a considerable number of

cores, supporting a large number of parallel threads. As the

number of threads executing lazy memcpy operations increases,

the CTT can quickly fill, causing stalls while waiting for entries

to be freed (§III-A1).

To resolve this, the CTT frees multiple entries in parallel. To

demonstrate this, we run the MVCC database with increasing

numbers of threads, while varying the number of CTT entries

being freed in parallel per memory controller. We examine the

throughput obtained, normalized to standard memcpy using the

same number of threads (Figure 22). For small thread counts,

the performance is stable as the rate of lazy copies is not

enough to fill the CTT. For larger thread counts, non-parallel

freeing ends up suffering due to stalls. Increasing parallelism

improves performance and prevents these stalls. Parallel CTT

freeing increases the memory bandwidth utilization. However,

servers provision memory bandwidth proportional to cores [42],

allowing (MC)2 to scale to larger servers.

VI. RELATED WORK

We are not the first to consider the impact of memcpy in

application performance. We review related work here.

Cache-based lazy memcpy: The closest line of work [15,

16, 54, 56] proposes a memcpy accelerator within the cache.

This accelerator adds a mapping table to the cache that remaps

destination buffer requests to the source buffer. However, the

high performance of this accelerator is contingent on the source

data being present in the cache. Otherwise, it must still be

fetched from memory.

Copy engines: Many proposals [10, 23, 37, 51, 52, 65] present

copy engines to improve bandwidth and reduce CPU data

movement overhead. Asynchrony is often used to provide high

performance, where the CPU initiates the copy engine and

performs other compute while waiting for copy completion.

Many of these proposals have high initialization overhead,

making them impractical for kilobyte-sized copies.

We view these proposals as addressing an orthogonal

problem to ours. (MC)2 eliminates unnecessary data movement

and removes copies from the critical path, delaying them to

access time where copy latencies can be hidden. (MC)2 could

make use of copy engines to start asynchronously moving data

on lazy memcpy calls, while access to uncopied data follows the

usual (MC)2 procedure, providing fully asynchronous copies

transparent to the CPU.

In-DRAM copies: A tangential line of work [8, 18, 46]

explores in-DRAM copy techniques. These take advantage

of high-bandwidth internal links present in DRAM to perform

copy operations fully within the DRAM module, without

needing to move data across the memory interconnect. These

proposals require the source and destination buffers to be

present within the same DRAM module.

Application-specific memcpy elision: Many proposals target

copy overheads in specific application domains. S. Karandikar

et. al. [27] propose a hardware accelerator for Protobuf opera-

tions. Several works [43, 44, 55] target reducing copy overheads

in serialization. zIO [49] eliminates redundant memory copies

present in IO-based application and OS operations. Contrary

to these, we seek to provide a general-purpose solution across

various application domains.

VII. CONCLUSION

Data movement is a significant CPU overhead in modern

applications. We propose (MC)2, a hardware mechanism that

enables lazy memcpy operations. (MC)2 reduces copy overhead

in the critical path. We evaluate (MC)2 using gem5 and show

that it provides 43% speedup for Google’s Protobuf workload

and 250× lower latency for huge page copy-on-write faults.

APPENDIX

A. Abstract

We provide the source code and setup necessary for (MC)2:

Lazy MemCopy at the Memory Controller. (MC)2 is a hardware

extension that provides support for a lazy memcpy operation.

This operation avoids copying data at the time of function

call. Instead, if copied destinations are later accessed, (MC)2

uses tracking information to seamlessly reroute the request

to the appropriate source, while lazily executing copies only

when necessary. (MC)2 modifies the memory controller and

has been implemented using gem5, a CPU simulator.

This artifact consists of the source code of the simulator,

benchmarks used for evaluation and all scripts needed to

replicate the figures in the paper.
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B. Artifact check-list (meta-information)
• Compilation: GCC 9 or higher.
• Binary: All required binaries are included.
• Data set: Scripts are provided to generate necessary datasets.
• Run-time environment: Simulator can be run on an x86

machine. We evaluated on a machine with Ubuntu 22.04.
• Hardware: An x86 machine with at least 100 GB of disk space

that supports KVM.
• Output: Text files containing the summarized results are

generated as well as PNG files of the graphs in the Evaluation
section (§V). Raw performance numbers can be found in the
results folder as well.

• How much disk space required (approximately)?: 100GB..
• How much time is needed to prepare workflow (approxi-

mately)?: 30 minutes
• How much time is needed to complete experiments (approx-

imately)?: 42 hours
• Publicly available?: Yes
• Archived (provide DOI)?: 10.5281/zenodo.10884322

C. Description

The artifact contains the source code of (MC)2 along with all

evaluated benchmarks and datasets. This allows for reproducing

figures 10 - 21 contained in §V.

1) How to access: The artifact can be downloaded from

https://github.com/AKKamath/MCSquare-ISCA24 or https://

zenodo.org/doi/10.5281/zenodo.10884322.
2) Hardware dependencies: The artifact requires an x86

machine with around 100 GB of free disk space that supports
KVM. To see if your CPU supports KVM run:

egrep -c '(vmx|svm)' /proc/cpuinfo

If it returns 0, your processor does not support KVM. If the

command returns 1 or more, your processor supports KVM.

3) Software dependencies: The gem5 simulator requires

either Ubuntu 20.04 or 22.04. Root privilege is required to

run the experiments. Detailed instructions on how to build can

be found here: https://www.gem5.org/documentation/general_

docs/building. This page also contains Docker Images with all

dependencies already installed.
For Ubuntu 22.04, the following installs all dependencies:

sudo apt install build-essential git m4 scons \
zlib1g zlib1g-dev libprotobuf-dev python3-dev \
protobuf-compiler libprotoc-dev qemu-kvm \
libvirt-daemon-system libgoogle-perftools-dev \
libboost-all-dev pkg-config python3-tk \
libvirt-clients bridge-utils unzip wget \
python3-matplotlib python3-numpy

D. Installation

The artifact can be built using the following Linux com-
mands:

sudo adduser `id -un` libvirt # FOR KVM
sudo adduser `id -un` kvm # FOR KVM
unzip MCSquare-AE.zip -d mcsquare_ae
cd mcsquare_ae
scons build/X86/gem5.opt -j ${CPUS}

${CPUS} is the number of threads to use to build the simulator.

A single-threaded build takes around 2 hours.

E. Experiment workflow

Most of the folders contained in the repository are for

the gem5 simulator. The relevant files and folders specific

to (MC)2 are contained in a folder called “mcsquare/”. In

this folder, a Makefile is provided which contains all the

commands necessary to run the different experiments. The

scripts/ directory contains all the scripts used with gem5 to run

specific experiments, which are called by the Makefile. These

have been organized into folders based on their benchmark.

The os/ directory contains the disk and kernel images used by

the simulator. On running experiments, a results/ folder will

be created within the mcsquare/ directory which will contain

all the raw results from the experiments. A figures/ folder will

be created on completion of experiments, which shall contain

the final plotted figures generated from the results.

The experiments can be launched in parallel and run in

the background, to reduce overall time for simulation. If

experiments take much longer than the listed time, it’s likely

the simulator hung during launch and the experiment should

be relaunched.
The following commands can be executed within the

“mcsquare/” folder to generate the different results:

make launch_micro_latency #Figure 10: 10 min
make launch_micro_breakdown #Figure 11: 10 min
make launch_micro_seq #Figure 12: 30 min
make launch_micro_rand #Figure 13: 1 hr
make launch_protobuf #Figure 14,20: 2 hr
make launch_mongo #Figure 15: 15 hr
make launch_mvcc #Figure 16a,17a: 10 hr
make launch_mvcc_8T #Figure 16b,17b: 10 hr
make launch_hugepage_access #Figure 18 20 min
make launch_pipe #Figure 19: 15 min
make launch_src_write #Figure 21: 10 min
make launch_ctt_free #Figure 22: 2 hr

The commands require sudo priviledges, and the account

password will be asked when the command is run.

F. Evaluation and expected results

For each key result, a tab-separated result .TXT file and

a .PNG graph are generated. The results/ folder contains all

generated tab-separated text files with filenames figureX.txt.

The figures/ folder contains the PNG graphs with filenames

figureX.png, where X is the figure number. The exception is

Figure 20 where only a .TXT file containing the result table

is outputted. These outputs can be matched against figures

reported in the paper. Minor variances in performance numbers

occur from run to run, but general trends should remain stable.
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